Contrôle : statistiques, étude de fonctions

Exercice 1 (2 points)
Une usine conditionne du sucre en poudre en paquets de 1 kg. Pour vérifier la conformité de la masse de sucre dans les paquets, on a effectué un contrôle consistant à mesurer la masse de chaque paquet d’un échantillon de 150 paquets.

<table>
<thead>
<tr>
<th>Masse (en dag)</th>
<th>[90 ; 95]</th>
<th>[95 ; 98]</th>
<th>[98 ; 100]</th>
<th>[100 ; 102]</th>
<th>[102 ; 105]</th>
<th>[105 ; 110]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effectif</td>
<td>14</td>
<td>26</td>
<td>58</td>
<td>47</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

1. Calculer la moyenne \overline{x}, la variance V et l’écart type σ de cette série.
2. L’organisme de contrôle émet un avis favorable si au moins 90% des paquets de sucre de l’échantillon ont une masse appartenant à l’intervalle $[\overline{x} - 2\sigma; \overline{x} + 2\sigma]$. Si ce n’est pas le cas, l’avis émis est défavorable et l’entreprise doit se mettre en conformité. Quel sera l’avis de l’organisme de contrôle ?

Exercice 2 (4 points)
Déterminer les ensembles de définitions et les variations des fonctions ci-dessous :

1. $f : x \mapsto 1 - \frac{4}{\sqrt{3x^2 - 6x + 5}}$.
2. $g : x \mapsto \frac{1}{|x|}$.

Exercice 3 (2 points)
1. Démontrer que si une fonction u est décroissante, strictement négative, sur un intervalle I alors $\frac{1}{u}$ est strictement croissante sur I.

Exercice 4 (4 points)
1. Soit f la fonction définie sur \mathbb{R} par $f(x) = |x^2 - 2x - 3|$.

 (a) Mettre sous forme canonique le second degré $x^2 - 2x - 3$.

 (b) Tracer la représentation graphique de la fonction $x \mapsto x^2 - 2x - 3$ dans un repère.

 (c) En déduire la représentation de la fonction f dans ce même repère.

2. Soit g la fonction définie sur \mathbb{R} par $g(x) = |x + 1| + |5 - 2x|$. Représenter g dans un repère. Justifier vos résultats.

Exercice 5 (2 points)
1. Résoudre l’équation $|3 - 2x| + |x + 6| = 3$. On pourra s’aider d’un tableau.

Exercice 6 (4 points)
Soit f et g les fonctions définies pour $x \geq -1$ par $f(x) = \sqrt{1 + x}$ et $g(x) = 1 + \frac{x}{2}$.

1. Tracer les courbes représentatives des fonctions f et g sur l’écran de la calculatrice lorsque x varie de -1 à 4. Que peut-on conjecturer concernant les positions des courbes représentatives des fonctions f et g ?
2. Soit $x \geq -1$. Comparer les réels $(f(x))^2$ et $(g(x))^2$.

 En déduire la comparaison de $f(x)$ et $g(x)$ ainsi que les positions relatives des courbes représentatives.

Exercice 7 (2 points)
1. Résoudre dans \mathbb{R} l’équation $\sqrt{7 - 3x} = 1 - x$.

Page 1
Correction

Exercice 1 énoncé

1. Les centres des intervalles sont 92,5 ; 96,5 ; 99 ; 101 ; 103,5 ; 107,5.
On obtient $\bar{x} \approx 98,76$ et $\sigma \approx 2,69$.

2. $\bar{x} - 2\sigma \approx 93,38$ et $\bar{x} + 2\sigma \approx 104,14$.
On remarque que 93,38 \in [90 ; 95] et que l'effectif de cet intervalle est de 14. L'amplitude de l'intervalle [90 ; 95] est 95 − 90 = 5 et celle de [93,38 ; 95] vaut 95 − 93,38 = 1,62. Si l'on suppose la répartition uniforme alors il y a $\frac{14 \times 1,62}{5} \approx 4,54$ paquets dans l'intervalle [93,38 ; 95].
De la même manière, il y a $\frac{4 \times 2,14}{3} \approx 2,85$ paquets dans l'intervalle [102 ; 104,14].
L'effectif total dans l'intervalle $[\bar{x} - 2\sigma ; \bar{x} + 2\sigma]$ est estimé à 4,54 + 26 + 58 + 47 + 2,85 = 138,39 soit $\frac{138,39}{150} \approx 92,3\%$. L'avis est donc favorable.

Exercice 2 énoncé

1. Mettons sous forme canonique le trinôme du second degré $3x^2 - 6x + 5$:

$$3x^2 - 6x + 5 = 3 \left(x^2 - 2x + \frac{5}{3} \right)$$

$$= 3 \left(x^2 - 2x + \frac{1}{3} + \frac{4}{3} \right)$$

$$= 3 \left((x-1)^2 - 1 + \frac{4}{3} \right)$$

$$= 3 \left((x-1)^2 + \frac{1}{3} \right)$$

$$= 3(x-1)^2 + 2$$

Pour tout $x \in \mathbb{R}$, $3(x+1)^2 + 8 > 0$ donc $\mathcal{D}_f = \mathbb{R}$.
2. On réalise un tableau de signes :

<table>
<thead>
<tr>
<th>x</th>
<th>−∞</th>
<th>−1</th>
<th>5/2</th>
<th>+∞</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>−x − 1</td>
<td>0</td>
<td>x + 1</td>
<td>x + 1</td>
</tr>
<tr>
<td></td>
<td>5 − 2x</td>
<td>5 − 2x</td>
<td>0</td>
<td>2x − 5</td>
</tr>
<tr>
<td></td>
<td>4 − 3x</td>
<td>6 − x</td>
<td>3x − 4</td>
<td></td>
</tr>
</tbody>
</table>

Exercice 5 énoncé

On résout −3 − 7x = 3 :

−3 − 7x = 3 ⇔ x = −\frac{6}{7}.

\[\left\{ \begin{array}{c}
-\frac{6}{7} \\
-\infty
\end{array} \right| \begin{array}{c}
-\frac{6}{5}
\end{array} \] donc l'équation \(|3 − 2x| + |5x + 6| = 3\) n'admet pas de solutions sur \(|−\infty; −\frac{6}{5} |\).

On résout 3x + 9 = 3 :

3x + 9 = 3 ⇔ x = −2.

\[\left\{ \begin{array}{c}
-\frac{6}{5} \\
-\frac{3}{2}
\end{array} \right| \begin{array}{c}
-\frac{3}{2}
\end{array} \] donc l'équation \(|3 − 2x| + |5x + 6| = 3\) n'admet pas de solutions sur \([−\frac{6}{5}; \frac{3}{2}]\).
On résout $7x + 3 = 3$:

$7x + 3 = 3 \iff x = 0.$

$0 \in \left[\frac{3}{2} ; +\infty \right]$ donc l’équation $|3 - 2x| + |5x + 6| = 3$ n’admet pas de solutions sur $\left[\frac{3}{2} ; +\infty \right]$.

Conclusion : l’équation $|3 - 2x| + |5x + 6| = 3$ n’a pas de solution.

Exercice 6 énoncé

1. On conjecture que C_g est au-dessus C_f.

2. Soit $x \geq -1$.

\[
(f(x))^2 - (g(x))^2 = 1 + x - \left(1 + x + \frac{x^2}{4}\right)
\]

\[
= -\frac{x^2}{4}
\]

On a donc

\[
(f(x))^2 \leq (g(x))^2.
\]

Comme $f(x) \geq 0$ et $g(x) \geq 0$, on en déduit que

$f(x) \leq g(x)$

C_g est donc au-dessus C_f.

Exercice 7 énoncé

\[
\sqrt{7} - 3x = 1 - x = 7 - 3x = (1 - x)^2 \text{ et } 1 - x \geq 0
\]

\[
= 7 - 3x = 1 - 2x + x^2 \text{ et } x \leq 1
\]

\[
= x^2 + x - 6 = 0 \text{ et } x \leq 1
\]

$\Delta = 25, x_1 = -3$ et $x_2 = 2$. On en déduit que

$\sqrt{7} - 3x = 1 - x \iff x = -3.$